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Abstract

This study assessed the performance of a deep neural
network (PulseAI, Belfast, United Kingdom) used in
conjunction with a dry-electrode ECG sensor device
(RhythmPad, D&FT, United Kingdom) to detect AF
automatically.

Simultaneous pairs of 12-lead ECGs and single-lead
dry-electrode ECGs were collected from 622 patients. The
12-lead ECGs were manually overread and used as
reference diagnoses. Twenty-two patients were confirmed
with AF and had an interpretable 12-lead and single-lead
dry-electrode ECG recording. The deep neural network
analysed the dry-electrode ECGs, and performance was
compared to the 12-lead interpretation. Overall, the deep
neural network algorithm yielded a sensitivity of 96%
(95% CI, 87%-100%), specificity of 99% (95% CI,
98%-100%) and positive predictive value of 81% (95%
CI, 66%-96%) for detection of AF episodes.

When coupled with dry-electrode ECG sensors, the
PulseAI neural network allows for large-scale and
low-cost screening for AF. Widespread implementation of
this technology may allow for earlier detection, treatment,
and management of patients with AF.

1. Introduction

Atrial Fibrillation (AF) is the most common form of
arrhythmia. It occurs when the natural pacemaker of the
heart, the sinoatrial node, is overpowered by chaotic
electrical potentials from other cells in the atria. Many of
these potentials are then conducted to the A-V node.
However, only some potentials create complete
contraction of the ventricles, thus creating an irregular
rhythm with no P-wave on the electrocardiogram (ECG).
When left untreated, AF can lead to stroke. AF causes
approximately 25-30% of ischaemic strokes when left
untreated. Appropriate treatment of AF patients with
anticoagulation can prevent strokes; however, accurate
detection remains a challenge, particularly in

asymptomatic patients. Some patients experience
episodes of AF that are sporadic and intermittent
(paroxysmal), making them difficult to detect using
traditional clinical methods.

AF is detected in a clinical environment by recording a
12-lead ECG, which is then manually interpreted by the
physician and used for diagnosis and treatment.
Traditional algorithms depend on lead-specific features to
detect QRS complexes and sense the absence of P-waves
for AF detection [1-3]. Hand-crafted feature selection
may not be transferable to other ECG devices, which
record a different ECG lead. Deep learning has emerged
as a class of algorithms capable of learning from large
datasets without hand-crafted feature selection..

DCNNs have improved the computerized
interpretation of ECG recordings from resting 12-lead
ECG and ambulatory ECG devices [4-6]. Many
single-lead devices have been developed recently to
record ECG signals from dry-electrode sensors. These
devices are a non-invasive way of assessing abnormal
heart rhythms at scale. However, the ECG data generated
by consumer smartwatches means physicians cannot
review it [4]; therefore, reliance is placed on computer
algorithms to interpret the data.

The PulseAI neural network is a device-agnostic
algorithm for detecting AF and other arrhythmias from a
range of clinical ECG monitors [7]. In this study, we aim
to assess the performance of the PulseAI neural network
for detecting AF from a commercially available
dry-electrode single-lead (Lead I) ECG device.

2. Methods

2.1 Clinical Data

This study involved 660 simultaneous pairs (22 AF) of
12-lead ECGs and Lead I smart device ECGs (SD-ECGs)
recorded at the Ashford and St Peter's Hospitals NHS
Foundation Trust in the United Kingdom.
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Figure 1. The clinical trial workflow. Each patient had
a smart-device ECG (SD-ECG) recording and a
clinical 12-lead ECG recording.

The 12-lead ECGs were interpreted by an expert
clinician and used as ground truth; we tested the PulseAI
neural network algorithm and the traditional R-R
algorithm on the SD-ECGs. Results were analysed to the
clinical gold standard, the human-overread 12-lead ECG.

2.2. ECG recordings

SD-ECGs were recorded using a dry electrode lead I
ECG device (RhythmPad, D&FT, United Kingdom). The
device recorded ECG samples in microvolts at 1000Hz or
samples per second. All ECGs were downsampled to
256Hz using linear interpolation for analysis by the
algorithms. The 12-lead ECGs were recorded on a GE
MAC 5500 (GE, Milwaukee, Wisconsin, USA).

2.3. The PulseAI neural network

The PulseAI Deep Neural Network (PDNN) takes raw
ECG voltage values as an input time series and produces
a single set of classification results. The PDNN
architecture is based on residual blocks and is similar to
the architecture described by Ribeiro for 12-lead ECG
interpretation [8]. The PDNN takes as an input the raw
ECG data (sampled at 256 Hz, or 256 samples per
second) in microvolts and outputs a single multiclass
prediction of the cardiac rhythm. The PDNN is similar to
the standard residual network architecture commonly
used for computer vision applications but adapted to 1D

signals.
The PDNN has nine convolutional layers, consisting

of four residual blocks with two convolutional layers per
block. Each residual block performs downsampling via
max pooling. To help with regularization, we applied
batch normalization, rectified linear activation and
dropout. The final layer is a fully connected Sigmoid
layer that produces a multi-class probability of each ECG
rhythm which is then thresholded using class-specific
thresholding. In this case, a cutoff of >=0.4 is applied to
the neural network output to determine the presence or
absence of AF.

The PDNN was trained de novo with random
initialization of the weights described by He et al. [9]. We
used the Adam optimizer and a mini-batch size of
thirty-two. We initialized the learning rate (0.001) and
reduced it by a factor of ten when the testing set loss
stopped improving for two consecutive epochs. During
PDNN training, the weights are altered to minimise
differences between the PDNN's output and the reference
annotations. We trained the PDNN on a randomly
selected single-lead from the 12-lead signal for each
training mini-batch to maximize the exposure of the
network to different waveform morphologies and
amplitudes, allowing for better generalisability.

This process was repeated for all ECGs in the training
set, consisting of more than 1 million ECGs from a
private internal database previously annotated by
clinicians, until the model had fully converged. The
model with the lowest loss on the test set was chosen.

 
2.4. State-of-the-art R-R interval algorithm

The state-of-the-art R-R interval algorithm is based on
two stages (1) detection of the QRS complex and (2)
statistical analysis of the R-R interval time series. The
QRS complexes were detected from the raw ECG signal
using the method outlined by Hamilton and Tompkins
[10], and R-R intervals were extracted without correction.

The approach outlined by Luo et al. was then applied.
The first-order differential R-R interval sequences from
the ECG signal were calculated. On the differential R-R
series, a polar coordinate transformation on the Poincaré
plot was applied to obtain the phase-based distribution.
The distribution width and the average distribution height
were then extracted and thresholded from the phase-based
distribution to classify the AF and non-AF episodes.
Further details can be found at [11]. The algorithm was
implemented to provide a reference to compare the
PDNN results.

2.5. Statistical Analysis

The performance of the algorithms, both PDNN and
state-of-the-art R-R interval, against the gold standard
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human over read 12-lead ECG interpretation was assessed
in terms of sensitivity, specificity, positive predictive
value and F1 score. Figures are presented as percentages
with 95% confidence intervals.

3. Results

Sensitivity for detection of the AF from both
algorithms were identical (96% [87%-100%] vs 96%
[87%-100%]). However, specificity and positive
predictive values were significantly higher by the DNN
due to a reduction in false positive detections. The
DCNN, therefore, also provided superior performance in
terms of the F1 score (88% [75%-100%] vs 15%
[11%-20%]).

Figure 2. The performance results for the PulseAI
neural network compared to a state-of-the-art R-R
interval algorithm.

The positive predictive value of the two algorithms
differed significantly (81% [66%-96%] vs 8%
[5%-11%]). The R-R interval-based approach is much
more susceptible to failure due to high signal noise levels.
False positives from the traditional R-R interval algorithm
were generally due to signal noise and, in some cases,
other irregular rhythms, such as sinus arrhythmia and
premature atrial and ventricular contractions.

4. Discussion

It is essential for the ECG devices are capable of
providing accurate interpretation for AF. Approximately

25-30% of strokes happen because of AF, and there are
450,000 hospitalizations yearly for patients with
AF-related issues in the United States alone [12]. In fact,
nearly 50 million people worldwide suffer from AF [13].
The most effective way to detect AF episodes is by using
ambulatory ECG monitoring [14], and this method is
more effective than conventional follow-up for patients
who have previously suffered a stroke.

In this study, we observed that the PDNN could detect
AF from SD-ECG recordings with high sensitivity,
specificity and PPV levels. Previous studies have
demonstrated the improved performance of deep neural
networks in detecting arrhythmias in comparison to other
approaches [5, 14-17]. However, the current study is the
first to evaluate the performance of a device-agnostic
neural network (PDNN) for cardiac rhythm analysis on a
dry-electrode ECG device. Evaluation of the PDNN on
the clinical data showed comparable or improved
performance with other industry-leading algorithms [17,
18] in detecting AF from clinical ECG monitors.

New smart devices incorporating dry-electrode
technology may, for the first time, allow for convenient,
cost-effective and scalable capture of ECG recordings for
the detection of AF. The large amount of data generated
by consumer devices will not allow physicians to review
each case in detail, so they will have to rely on ECG
interpretation algorithms. Therefore, reducing the number
of false positive detections whilst maintaining sensitivity
for true AF cases is highly desirable.

5. Conclusions

The findings of this study demonstrate that
interpretation of SD-ECG recordings with the PDNN
dramatically reduces the number of false positives whilst
maintaining the sensitivity for AF detection compared to
traditional R-R interval algorithms.

These findings provide further clinical evidence that
the PDNN can be device agnostic for detecting AF from
single-lead ECG, enabling a range of clinical and
consumer-focused applications.
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